Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(4): 2493-2501, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37986264

RESUMEN

BACKGROUND: The development and fine-tuning of biotechnological processes for fish oil extraction constitute a very important focus to contribute to the development of a food industry based on fish consumption. This work lies in a comparative analysis of the oil extraction yield of Myliobatis goodei livers using free and immobilized enzymes. RESULTS: An immobilized biocatalyst was designed from the cell-free extract of a Bacillus sp. Mcn4. A complete factorial design was used to study the components of the bacterial culture medium and select the condition with the highest titers of extracellular enzymatic activities. Wheat bran had a significant effect on the culture medium composition for enzymatic production. The immobilized biocatalyst was designed by covalent binding of the proteins present in the cocktail retaining a percentage of different types of enzymatic activities (Mult.Enz@MgFe2 O4 ). Among the biocatalyst used, Alcalase® 2.4 L and Purazyme® AS 60 L (free commercial proteases) showed extraction yields of 87.39% and 84.25%, respectively, while Mult.Enz@MgFe2 O4 achieved a better one of 89.97%. The oils obtained did not show significant differences in their physical-chemical properties while regarding the fatty acid content, the oil extracted with Purazyme® AS 60 L showed a comparatively lower proportion of polyunsaturated fatty acids. CONCLUSIONS: Our results suggest that the use of by-products of M. goodei is a valid alternative and encourages the use of immobilized multienzyme biocatalysts for the treatment of complex substrates in the fishing industry. © 2023 Society of Chemical Industry.


Asunto(s)
Enzimas Inmovilizadas , Lipasa , Hidrólisis , Lipasa/química , Enzimas Inmovilizadas/química , Aceites de Pescado/metabolismo , Hígado/metabolismo
2.
Appl Microbiol Biotechnol ; 105(18): 6759-6778, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34458936

RESUMEN

The genus Cohnella belongs to a group of Gram-positive endospore-forming bacteria within the Paenibacillaceae family. Although most species were described as xylanolytic bacteria, the literature still lacks some key information regarding their repertoire of xylan-degrading enzymes. The whole genome sequence of an isolated xylan-degrading bacterium Cohnella sp. strain AR92 was found to contain five genes encoding putative endo-1,4-ß-xylanases, of which four were cloned, expressed, and characterized to better understand the contribution of the individual endo-xylanases to the overall xylanolytic properties of strain AR92. Three of the enzymes, CoXyn10A, CoXyn10C, and CoXyn11A, were shown to be effective at hydrolyzing xylans-derived from agro-industrial, producing oligosaccharides with substrate conversion values of 32.5%, 24.7%, and 10.6%, respectively, using sugarcane bagasse glucuronoarabinoxylan and of 29.9%, 19.1%, and 8.0%, respectively, using wheat bran-derived arabinoxylan. The main reaction products from GH10 enzymes were xylobiose and xylotriose, whereas CoXyn11A produced mostly xylooligosaccharides (XOS) with 2 to 5 units of xylose, often substituted, resulting in potentially prebiotic arabinoxylooligosaccharides (AXOS). The endo-xylanases assay displayed operational features (temperature optima from 49.9 to 50.4 °C and pH optima from 6.01 to 6.31) fitting simultaneous xylan utilization. Homology modeling confirmed the typical folds of the GH10 and GH11 enzymes, substrate docking studies allowed the prediction of subsites (- 2 to + 1 in GH10 and - 3 to + 1 in GH11) and identification of residues involved in ligand interactions, supporting the experimental data. Overall, the Cohnella sp. AR92 endo-xylanases presented significant potential for enzymatic conversion of agro-industrial by-products into high-value products.Key points• Cohnella sp. AR92 genome encoded five potential endo-xylanases.• Cohnella sp. AR92 enzymes produced xylooligosaccharides from xylan, with high yields.• GH10 enzymes from Cohnella sp. AR92 are responsible for the production of X2 and X3 oligosaccharides.• GH11 from Cohnella sp. AR92 contributes to the overall xylan degradation by producing substituted oligosaccharides.


Asunto(s)
Bacillales , Saccharum , Endo-1,4-beta Xilanasas/genética , Hidrólisis , Oligosacáridos , Xilanos
3.
Prep Biochem Biotechnol ; 51(9): 871-880, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33439095

RESUMEN

Bacillus sp. AR03 have been described as an important producer of carbohydrate-active enzymes (CAZymes) when growing in a peptone-based medium supplemented with simple sugars and/or carboxymethyl cellulose (CMC) as carbon sources. This work aimed to identify the extracellular enzymatic cocktails through shotgun proteomics. The proteomic analysis showed that enzymes involved in cellulose and xylan degradation were among the most abundant proteins. These enzymes included an endo-glucanase GH5_2 and a glucuronoxylanase GH30_8, which were found in all conditions. In addition, several proteins were differentially expressed in the three evaluated culture media, indicating microbial metabolic changes due to the different supplied carbon sources, particularly, in the presence of CMC. Finally, the capability of the crude enzymatic cocktails from culture media to degrade birchwood xylan was assessed, which produced mostly xylooligosaccharides containing among 3-5 xylose units. Consequently, this work shows the potential of the extracellular enzymes from Bacillus sp. AR03 for producing emergent prebiotics.


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/metabolismo , Celulosa/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Glucuronatos/metabolismo , Oligosacáridos/metabolismo , Secretoma/enzimología , Xilanos/metabolismo
4.
J Mol Microbiol Biotechnol ; 27(5): 277-288, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29166641

RESUMEN

Members of Cohnella sp. isolated from a variety of environments have been shown to be glycoside hydrolase producers. Nevertheless, most evaluations of members of this genus are limited to their taxonomic description. The strain AR92, previously identified as belonging to the genus Cohnella, formed a well-supported cluster with C. thailandensis and C. formosensis (>80% bootstrap confidence). Its growth and xylanase production were approached by using a mineral-based medium containing alkali-pretreated sugarcane bagasse as the main carbon source, which was assayed as a convenient source to produce biocatalysts potentially fitting its degradation. By means of a two-step statistical approach, the production of endoxylanase was moderately improved (20%). However, a far more significant improvement was observed (145%), by increasing the inoculum size and lowering the fermentation temperature to 25°C, which is below the optimal growth temperature of the strain AR92 (37°C). The xylanolytic preparation produced by Cohnella sp. AR92 contained mild temperature-active endoxylanase (identified as redundant GH10 family) for the main activity which resulted in xylobiose and xylo-oligosaccharides as the main products from birchwood xylan.


Asunto(s)
Bacillales/clasificación , Bacillales/enzimología , Endo-1,4-beta Xilanasas/metabolismo , Bacillales/citología , Bacillales/crecimiento & desarrollo , Carbono/metabolismo , Celulosa/metabolismo , Medios de Cultivo/química , ADN Ribosómico/genética , Disacáridos/metabolismo , Fermentación , Oligosacáridos/metabolismo , Filogenia , Saccharum/metabolismo , Especificidad de la Especie , Temperatura , Xilanos/metabolismo
5.
Prep Biochem Biotechnol ; 47(6): 589-596, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28106512

RESUMEN

The behavior of three isolates retrieved from different cellulolytic consortia, Bacillus sp. AR03, Paenibacillus sp. AR247 and Achromobacter sp. AR476-2, were examined individually and as co-cultures in order to evaluate their ability to produce extracellular cellulases and xylanases. Utilizing a peptone-based medium supplemented with carboxymethyl cellulose (CMC), an increase estimation of 1.30 and 1.50 times was obtained by the co-culture containing the strains AR03 and AR247, with respect to enzyme titles registered by their individual cultivation. On the contrary, the extracellular enzymatic production decreased during the co-cultivation of strain AR03 with the non-cellulolytic Achromobacter sp. AR476-2. The synergistic behavior observed through the combined cultivation of the strains AR03 and AR247 might be a consequence of the consumption by Paenibacillus sp. AR247 of the products of the CMC hydrolysis (i.e., cellobiose and/or cello-oligosaccharides), which were mostly generated by the cellulase producer Bacillus sp. AR03. The effect observed could be driven by the requirement to fulfill the nutritional supply from both strains on the substrate evaluated. These results would contribute to a better description of the degradation of the cellulose fraction of the plant cell walls in nature, expected to an efficient utilization of renewable sources.


Asunto(s)
Achromobacter/enzimología , Bacillus/enzimología , Celulasa/metabolismo , Técnicas de Cocultivo/métodos , Xilosidasas/metabolismo , Achromobacter/crecimiento & desarrollo , Achromobacter/metabolismo , Bacillus/crecimiento & desarrollo , Bacillus/metabolismo , Carboximetilcelulosa de Sodio/metabolismo , Celobiosa/metabolismo , Celulosa/metabolismo , Microbiología Industrial/métodos
6.
Appl Biochem Biotechnol ; 179(1): 16-32, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26797928

RESUMEN

A cellulase-producing bacterium isolated from pulp and paper feedstock, Bacillus sp. AR03, was evaluated by means of a factorial design showing that peptone and carbohydrates were the main variables affecting enzyme production. Simple sugars, individually and combined with carboxymethyl cellulose (CMC), were further examined for their influence on cellulase production by strain AR03. Most of the mono and disaccharides assayed presented a synergistic effect with CMC. As a result, a peptone-based broth supplemented with 10 g/L sucrose and 10 g/L CMC maximized enzyme production after 96 h of cultivation. This medium was used to produce endoglucanases in a 1-L stirred tank reactor in batch mode at 30 °C, which reduced the fermentation period to 48 h and reaching 3.12 ± 0.02 IU/mL of enzyme activity. Bacillus sp. AR03 endoglucanases showed an optimum temperature of 60 °C and a pH of 6.0 with a wide range of pH stability. Furthermore, presence of 10 mM Mn(2+) and 5 mM Co(2+) produced an increase of enzyme activity (246.7 and 183.7 %, respectively), and remarkable tolerance to NaCl, Tween 80, and EDTA was also observed. According to our results, the properties of the cellulolytic cocktail from Bacillus sp. AR03 offer promising features in view of potential biorefinery applications.


Asunto(s)
Bacillus/enzimología , Carboximetilcelulosa de Sodio/química , Celulosa/biosíntesis , Bacillus/química , Carbohidratos/química , Celulasa/química , Fermentación , Monosacáridos/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...